
Chapter 1: Introduction

References

Operating System Concepts, 10th Edition

https://www.os-book.com/OS10/

Avi Silberschatz, Peter Baer Galvin, and Greg Gagne

Operating Systems: Internals and Design Principles, 9th Edition

William Stallings

What is an Operating System?

Silberschatz:

 Is a (most important) software that manages a computer’s hardware.

 A program that acts as an intermediary between a user of a computer and
the computer hardware includes the CPU, memory, storage and I/O
devices.

 A fundamental responsibility of an operating system is to allocate
these hardware resources to programs.

Stalling:

 A program that controls the execution of application programs

 An interface between applications and hardware

Operating System Goals

• Execute user programs and make solving user problems easier

• Make the computer system convenient to use

• Use the computer hardware in an efficient manner

Computer System Structure

▪ Computer system can be divided into four components:

• Hardware – provides basic computing resources

 CPU, memory, I/O devices

• Operating system

 Controls and coordinates use of hardware among various
applications and users

• Application programs – define the ways in which the system
resources are used to solve the computing problems of the users

Word processors, compilers, web browsers, database systems,
video games

• Users

 People, machines, other computers

Abstract View of Components of Computer

Components of a Computer System

• When we say “computers” run operating systems, we don’t just mean

traditional desktop PCs and laptops.

• The smartphones is a computer, as are tablets, smart TVs, game consoles,

smart watches, and Wi-Fi routers.

• Other devices, such as your Wi-Fi router, may run “embedded operating

systems.” These are specialized operating systems with fewer functions than

a typical operating system, designed specifically for a single task—like running

a Wi-Fi router, providing GPS navigation, or operating an ATM.

What is an Operating System?

Modern OS is Complex

The Layers in Systems

VLSI

Computer Organization

Transistors

Operating Systems

Applications

OS Definition (Silberschatz)

Silberschatz:

OS is a resource allocator

• Manages all resources

• Decides between conflicting requests for efficient and fair resource use

OS is a control program

• Controls execution of programs to prevent errors and improper use of the
computer

Stallings:
An OS is a program that controls the execution of application programs, and acts as
an interface between applications and the computer hardware.

OS Usage

• HardwareAbstraction (User/Computer Interface)

Turns hardware into something that applications can use

• Resource Management
manage system’s resources

OS as a User/Computer Interface

A Simple Program

What is the output of the following program?

How is the string displayed on the screen?

Displaying on the Screen

ous

Processor

Processor Memory
Graphics Card

• Can be complex and tedi
• Hardware dependent

Without an OS, all programs need to take care of every nitty gritty detail

Monitor

“Hello World” “Hello World” +
coordinates, color,
depth, etc

Operating Systems Provide Abstraction

•

•

Easy to program apps
– No more nitty gritty details for programmers

• Reusable functionality
– Apps can reuse the OS functionality

Portable
– OS interfaces are consistent. The app does not change when hardware changes

Operating System

App

system call
(write to STDOUT)

Device
driver

OS as Resource Manager

• OS must manage CPU, memory, network, disk etc…

• Resource Management
– allows multiple apps to share resources

– protects apps from each other

– improves performance by efficient utilization of resources

OS as a Resource Manager

• Multiple apps but limited hardware resources

Operating Systems

A
pp

s

A few processors

What Operating Systems Do

▪ Depends on the point of view

▪ Users want convenience, ease of use and good performance

• Don’t care about resource utilization

▪ But shared computer such as mainframe or minicomputer must keep all
users happy

• Operating system is a resource allocator and control program
making efficient use of HW and managing execution of user programs

▪ Users of dedicate systems such as workstations have dedicated
resources but frequently use shared resources from servers

▪ Mobile devices like smartphones and tables are resource poor,
optimized for usability and battery life

• Mobile user interfaces such as touch screens, voice recognition

▪ Some computers have little or no user interface, such as embedded
computers in devices and automobiles

• Run primarily without user intervention

1. The Evolution of Operating Systems
1. Serial Processing: No Operating Systems

2. Simple Batch Systems: Monitor

3. Multiprogrammed Batch Systems

4. Time-Sharing Systems

Evolution of Operating Systems

Serial Processing (1940s-1950s)

■ Electronic Numerical Integrator and Computer (ENIAC)

https://en.wikipedia.org/wiki/ENIAC

Vacuum Tubes

• Hardware
–

–

Vacuum tubes and IO with punchcards

Expensive and slow

• UserApps
– Generally straightforward numeric computations done in machine language

ENIAC

IBM Punch card

Serial Processing

■ The user have to access the system in series.

■ The programmer interacted directly with the computer
hardware – No OS

■ Machines run from a console with display lights, toggle switches,
input device, and printer

■ Problem

■ Scheduling: most installations used a hardcopy sign-up sheet to reserve
computer time

■ Setup time: includes loading the compiler, source program, saving
compiled program, and loading and linking

Serial Processing

• OS: Unheard of

• Human feeds program and prints output

George Ryckman, on IBM’s first computer

The cost of wastage was $146,000 per month (in 1954 US Dollars)

Simple Batch Systems

■ The central idea behind the simple batch processing scheme is
■ Batch: made up by many jobs from users (batch jobs together)

■ A job may use several program

■ The use of a piece of software known as the monitor that controls
the sequence of events.

■ Program returns control to monitor when finished

■ Job Control Language (JCL):

■ Special type of programming language

■ Provides instruction to the monitor

■ What compiler to use

■ What data to use

Simple Batch Systems

• Operator collects jobs (through punch cards) and feeds it into a magnetic tape drive

• Special Program reads a job from input tape drive and on completion writes result

to output tape drive

• The next program is then read and executed

• Printing was done offline

Simple Batch Systems

• Pros: Better utilization of machine (keep machine busy)

• Cons:
• In Batch Systems execute time includes reading from

input and writing to output.

• I/O considerably slower than execution
• Magnetic tapes were best read sequentially

• Therefore programmer must wait for long time

CPU
Input

Magnetic
Tape

Output
Magnetic

Tape

Multiprogrammed Batch Systems

■ Simple Batch Systems
■ Only one job in memory at a time

■ Multiprogrammed Batch Systems
■ Multiple jobs in memory at a time

■ Why ?
■ I/O devices are slow compare to the CPU

■ CPU is not busy

Multiprogrammed Batch Systems

Multiprogramming

 Processor has more than one program to execute

 The sequence in which programs are executed depend on their relative

priority and whether they are waiting for I/O

 After an interrupt handler completes, control may not return to the

program that was executing at the time of the interrupt

Multiprogrammed Batch Systems

■ Uniprogramming
■ Processor must wait for I/O instruction to complete before

preceding

■ Multiprogramming
■ When one job needs to wait for I/O, the processor can switch to the

other job
■ Also known as Multitasking

Time-Sharing Systems

■ Why?
■ Background: 1960s

■ Mainframe Computer System:

■ Multiple users simultaneously access the system through terminals

■ Requirement: handle multiple interactive users/jobs by using
multiprogramming

■ Idea

■ Processor’s time is shared among multiple users/jobs

Time-Sharing Systems - mainframe

Timesharing

Terminal 1 Terminal 2 Terminal 3 Terminal 4

time 31

Who uses the CPU?

Personal Computers

• Hardware
– VLSI ICs

• User Programs
– High level languages

• Operating Systems
– Multi tasking

– More complex memory management and scheduling

– Synchronization

– Examples : Windows, Linux, etc

Computer-System Architecture

▪ Most systems use a single general-purpose processor

• Most systems have special-purpose processors as well

▪ Multiprocessors systems growing in use and importance

• Also known as parallel systems, tightly-coupled systems

• There are multiple processors

• These processors share same main memory and I/O facilities

• Advantages include:

1. Increased throughput

2. Economy of scale

3. Increased reliability – fault tolerance

• Two types:

1. Asymmetric Multiprocessing – each processor is assigned a specie task.

2. Symmetric Multiprocessing – each processor performs all tasks

Symmetric Multiprocessing (SMP)

Dual-Core Design

▪ Multi-chip and multicore

▪ Systems containing all chips

• Chassis containing multiple separate systems

Advanced OS

▪ Distributed OS

▪ Network OS

▪ Real-time OS

• Each process has a deadline and must be finished by its
deadline

Distributed systems

A collection of independent computers that appears to its users as a single

coherent system.

Example: High Performance Computing (HPC) clusters.

Real-Time Systems

Hard deadline examples: nuclear power plant control system, weapon
system, flight air traffic control system

Soft deadline example: multimedia systems (film = 24-32 frames per second)

Overview of Computer System Structure

Computer System Organization

 You should know the structure of computer

systems from COMP 222: Computer

Organization course.

 Review the required concepts from Chapter

1: Computer System Overview, Stallings.

Computer System Organization

▪ Computer-system operation

• One or more CPUs, device controllers connect through common
bus providing access to shared memory

• Concurrent execution of CPUs and devices competing for memory
cycles

Computer-System Operation

▪ I/O devices and the CPU can execute concurrently

▪ Each device controller is in charge of a particular device type

▪ Each device controller has a local buffer

▪ Each device controller type has an operating system device driver to manage
it

▪ CPU moves data from/to main memory to/from local buffers

▪ I/O is from the device to local buffer of controller

▪ Device controller informs CPU that it has finished its operation by causing
an interrupt

Common Functions of Interrupts

▪ Interrupt architecture must save the address of the interrupted
instruction

▪ A trap or exception is a software-generated interrupt caused either by
an error or a user request

▪ An operating system is interrupt driven

Interrupts

▪ Mechanism by which other modules may interrupt the normal
sequencing of the processor

▪ Provided to improve processor utilization

Most I/O devices are slower than the processor

 Processor must pause to wait for device

Wasteful use of the processor

Program Generated by some condition that occurs as a result of an
instruction execution, such as arithmetic overflow, division
by zero, attempt to execute an illegal machine instruction,
and reference outside a user's allowed memory space.

Timer Generated by a timer within the processor. This allows the
operating system to perform certain functions on a regular
basis.

I/ O Generated by an I/O controller, to signal normal
completion of an operation or to signal a variety of error
conditions.

H ardware
failure

Generated by a failure, such as power failure or memory
parity error.

Classes of Interrupts

Interrupt Handling

▪ The operating system preserves the state of the CPU by storing the
registers and the program counter

▪ Determines which type of interrupt has occurred:

▪ Separate segments of code determine what action should be taken for
each type of interrupt

Storage Hierarchy

▪ Storage systems organized in hierarchy

• Speed

• Cost

• Volatility

▪ Caching – copying information into faster storage system; main memory
can be viewed as a cache for secondary storage

Storage-Device Hierarchy

Caching

▪ Important principle, performed at many levels in a computer (in hardware,

operating system, software)

▪ Information in use copied from slower to faster storage temporarily

▪ Faster storage (cache) checked first to determine if information is there

• If it is, information used directly from the cache (fast)

• If not, data copied to cache and used there

▪ Cache smaller than storage being cached

• Cache management important design problem

• Cache size and replacement policy

Operating System Operations

 Computer Startup

 bootstrap program is loaded at power-up

 Typically stored in ROM or EPROM, generally known as firmware

 Initializes all aspects of system

 Loads operating system kernel and starts execution

 Kernel

 Portion of operating system that is in main memory

 Contains most frequently used functions

Operating System Operations

 The operating system then starts executing the first process, and waits

for some event to occur.

 The occurrence of an event is usually signaled by an interrupt from either the

hardware or the software

 Modern operating systems are interrupt driven.
 Events are signaled by the occurrence of an interrupt

 Types of Interrupts
 Hardware Interrupts: hardware sending a signal to the CPU, usually by

way of the system bus.

 Software Interrupts (exception or traps): software may trigger an interrupt
by executing a special operation called a system call, or by causing an
error.

Operating-System Operations

Software interrupt (exception or trap):

 Software error (e.g., division by zero)

 Request for operating system service – system call

 Other process problems include infinite loop, processes modifying

each other or the operating system

Dual-mode Operation

▪ Dual-mode operation allows OS to protect itself and other system
components

• User mode and kernel mode (supervisor mode, system mode or
privileged mode)

• In user mode, there is restricted access to the HW resources, however
in kernel mode, there is full access to the HW resources.

▪ Mode bit provided by hardware

• Provides ability to distinguish when system is running user code or
kernel code.

• Some instructions designated as privileged, only executable in kernel
mode

• How do we guarantee that user does not explicitly set the mode bit to
“kernel”?

• System call changes mode to kernel, return from call resets it to
user

Transition from User to Kernel Mode

Timer

▪ It prevents a user program from getting stuck in an infinite loop or not

calling system services and never returning control to the operating

system.

▪ A timer can be set to interrupt the computer after a specified period.

▪ Before turning over control to the user, the operating system ensures

that the timer is set to interrupt.

Operating System Components

 Process Management

 Memory Management

 Storage Management

 File-System Management

 Mass-Storage Management

 Caching

 I/O Systems

 Protection and Security

Process Management

 A process is a program in execution.
 It is a unit of work within the system.

 The entity that can be assigned to and executed on a processor

 An instance of a program running on a computer

 Program is a passive entity, process is an active entity.

 Process needs resources to accomplish its task.

 CPU, memory, I/O, files

Process Management Activities

The operating system is responsible for the following activities in connection

with process management:

▪ Creating and deleting both user and system processes

▪ Suspending and resuming processes

▪ Providing mechanisms for process synchronization

▪ Providing mechanisms for process communication

▪ Providing mechanisms for deadlock handling

Memory Management

 For a program to be executed, it must be mapped to absolute

addresses and loaded into memory.

 As the program executes, it accesses program instructions and data from

memory by generating these absolute addresses.

 Eventually, the program terminates, its memory space is

declared available.

 General-purpose computers keep several programs in memory (for

multiprogramming and time-sharing), creating a need for memory

management.

Memory Management

▪ Memory management determines what is in memory and when

• Optimizing CPU utilization and computer response to users

▪ Memory management activities

• Keeping track of which parts of memory are currently being used and
by whom

• Deciding which processes (or parts thereof) and data to move into and
out of memory

• Allocating and deallocating memory space as needed

Storage Management

▪ OS provides uniform, logical view of information storage

• Abstracts physical properties to logical storage unit - file

• Each medium is controlled by device (i.e., disk drive, tape drive)

 Varying properties include access speed, capacity, data- transfer
rate, access method (sequential or random)

▪ File-System management

• Files usually organized into directories

• Access control on most systems to determine who can access what

• OS activities include

 Creating and deleting files and directories

 Primitives to manipulate files and directories

Mapping files onto secondary storage

 Backup files onto stable (non-volatile) storage media

Storage Management

▪ Usually disks used to store data that does not fit in main memory or data
that must be kept for a “long” period of time

▪ Proper management is of central importance

▪ Entire speed of computer operation hinges on disk subsystem and its
algorithms

▪ OS activities

• Mounting and unmounting

• Free-space management

• Storage allocation

• Disk scheduling

• Partitioning

• Protection

I/O Subsystem

▪ One purpose of OS is to hide peculiarities of hardware devices from the

user

▪ I/O subsystem responsible for

• Memory management of I/O including buffering (storing data

temporarily while it is being transferred), caching (storing parts of data

in faster storage for performance), spooling (the overlapping of output

of one job with input of other jobs)

• General device-driver interface

• Drivers for specific hardware devices

Protection and Security

▪ Protection – any mechanism for controlling access of processes or users to resources

defined by the OS

▪ Security – defense of the system against internal and external attacks

• Huge range, including denial-of-service, worms, viruses, identity theft, theft of service

▪ Systems generally first distinguish among users, to determine who can do what

• User identities (user IDs, security IDs) include name and associated number,

one per user

• User ID then associated with all files, processes of that user to determine access

control

• Group identifier (group ID) allows set of users to be defined and controls managed,

then also associated with each process, file

• Privilege escalation allows user to change to effective ID with more rights

Virtual Machines

 Main idea

 To abstract the hardware of a single computer (the CPU, memory, disk drives,

and so forth) into several different execution environments, thereby creating the

illusion that each separate execution environment is running its own private

computer.

 Avirtual machine provides an interface identical to the underlying bare

hardware.

 Benefit:

 to share the same hardware yet run several different execution environments

(that is, different operating systems) concurrently.

Computing Environments - Virtualization

VMWare

